
Optimal Download Time in a cloud-assisted
Peer-to-Peer Video on Demand service

Pablo Rodrı́guez-Bocca and Claudia Rostagnol

Abstract In this paper we present a mathematical model to optimize the average
download time in a Peer-to-peer Video on Demand system, where a set of resources
are available in the cloud to assist the service. First, we propose a simple optimiza-
tion model based on a Markov chain. Then, we provide some numerical results
based on simulations and optimizations using a GRASP method on a real scenario.

1 Introduction

Nowadays, lots of applications used to share contents over the Internet are based on
the BitTorrent protocol [3, 5]. One of such applications is the GoalBit Video Plat-
form [1], currently used to share live content over a P2P network. We are working on
adding Video on Demand (VoD) support to GoalBit, using the standard BitTorrent
protocol. In GoalBit, as in BitTorrent, end-users are called peers. They are classified
in two groups: if the peer is downloading a content it is a downloader; when a peer
finishes downloading it becames a seeder. There is also an entity or node named
tracker, which knows all the peers that are sharing a content (seeding or download-
ing). GoalBit introduces a new type of node to the P2P network named super-peer.
This kind of node has better bandwidth than a normal peer, and usually is in the net-
work for very long periods of time (very stable peers). The super-peers are intended
to store and upload the contents to normal peers (with a very short life in the sys-
tem). In the current GoalBit protocol specification, super-peers are nodes managed
by the operator of the platform and they are hosted in the cloud. We are thinking
about the possibility of promoting peers to super-peers in future specifications. For
more details about GoalBit specification please refer to [1].

The work in [3] provides an analysis of the estimated average time to download
a file (content) on a BitTorrent network, assuming that the behavior of peers can be

Instituto de Computación, Facultad de Ingenierı́a, Universidad de la República,
Montevideo, Uruguay. e-mail: prbocca@fing.edu.uy · e-mail: crostag@fing.edu.uy

1

2 Pablo Rodrı́guez-Bocca and Claudia Rostagnol

modeled by a Markov chain. This work is generalized in [5], extending the model for
several concurrent contents, assuming that most BitTorrent users download several
files at the same time. Our goal is to distribute video files over the GoalBit platform
depending on the storage capacity and videos’ popularity, minimizing the average
download time for end-users. To achieve that, we extend those models, so when a
video becomes very popular and lots of users want to watch it, we generate more
copies for this video in the cloud (if we have enough resources), in order to satisfy
the users demand and do not increase the average download time of the system.
When the video becames less popular, we can remove some copies to free space
and resources. All this process is made automatically and dynamically based on the
model that we defined. In Section 2 we introduce our combinatorial optimization
problem based on a fluid model that extends the previous work [5]. In Section 3 we
present a GRASP [4] metaheuristic solution for that problem. Finally, in Section 4,
we show the performance of the solution in a real scenario, and we present general
conclusions of our work.

2 Video-on-Demand Fluid Model

To understand the behavior of peers in a P2P system like GoalBit we should analyze
the evolution, scalability, and sharing efficiency of peers. We extend the stochastic
fluid model presented in [5], providing insightful results for performance issues
and the downloading average time for several contents downloaded simultaneously.
Since each peer can download more than one content at time t, peers are grouped
in classes: {C1,C2, . . . ,CK}, such that a peer is in the class Ci if it is downloading i
contents at the same time. The data and variables of the model are shown in Figure 1.

K available videos
s j size (in kbits) of video j
xi

j(t) downloaders in class Ci downloading video j at time t
yi

j(t) seeders in class Ci seeding video j at time t
zi

j(t) super-peers in class Ci seeding video j at time t
λ i

j arrival rate for peers in class Ci requesting video j
(where ∑i λ i

j is the j-th video popularity)
γ departure rate of seeders
c total download bandwidth for each peer (in kbps)
µ total upload bandwidth for each peer (in kbps)
ρ total upload bandwidth for each super-peer (in kbps)
η video sharing effectiveness between peers (η ∈ [0,1])

Fig. 1 Data and variables of the fluid model

To simplify the model representation we assume the following (as in [5]):

1. Resources are used equitably among the contents that are downloaded or served
simultaneously. If the peer belongs to class Ci, each video that it downloads will
have the i-th part of the peer’s bandwidth. Since videos have different sizes, we
divide the bandwidth (in kbps) by the video size in order to know the download
rate (in files per second) for video j. Therefore, if the peer is in class Ci, the file

Optimal Download Time in a cloud-assisted Peer-to-Peer Video on Demand service 3

portion downloaded per second for content j is ci
j =

c
is j

. The same is applied to

µ i
j =

µ

is j
and ρ i

j =
ρ

is j
∀i, j ∈ {1 . . .K}.

2. Peers in class Ci, that at time t are downloading video j, receive from all other
downloaders an amount of content proportional to the upload bandwidth µ i

j and

their population xi
j(t):

µ i
jx

i
j(t)

∑k µk
j xk

j(t)
∑k ηµk

j xk
j(t) = ηµ i

jx
i
j(t).

3. Peers in class Ci, that at time t are downloading video j, receive from all the
seeders an amount of content proportional to the download bandwidth ci

j and

their population xi
j(t):

ci
jx

i
j(t)

∑k ck
jx

k
j(t)

∑k µk
j yk

j(t).

4. Peers in class Ci, that at time t are downloading video j, receive from all the
super-peers an amount of content proportional to the download bandwidth ci

j

and their population xi
j(t):

ci
jx

i
j(t)

∑k ck
jx

k
j(t)

∑k ρk
j zk

j(t).

Supposing that we can model the problem as a Markovian chain, we want to know
the peers’ behavior (how xi

j and yi
j vary as a function of time). Modeling the behavior

as a simple fluid model we get the following equation ∀i, j ∈ {1 . . .K}:

dxi
j

dt
= λ

i
j−ηµ

i
jx

i
j(t)−

ci
jx

i
j(t)

∑k ck
jx

k
j(t)

∑
k

µ
k
j yk

j(t)−
ci

jx
i
j(t)

∑k ck
jx

k
j(t)

∑
k

ρ
k
j zk

j(t) (1)

dyi
j

dt
= ηµ

i
jx

i
j(t)+

ci
jx

i
j(t)

∑k ck
jx

k
j(t)

∑
k

µ
k
j yk

j(t)+
ci

jx
i
j(t)

∑k ck
jx

k
j(t)

∑
k

ρ
k
j zk

j(t)− γyi
j(t) (2)

Assuming that the system will reach its steady state, where the number of peers

is stable (
dxi

j
dt =

dyi
j

dt = 0 ∀i, j ∈ {1 . . .K}), we can calculate the steady state value for
xi

j(t) and yi
j(t): Equations (1) and (2) assume that the bandwidth constraint is in the

xi
j = max{

λ i
j is j

c
,

iλ i
j

γµη

γs j ∑k λ k
j −µ ∑k

λk
j

k − γρ ∑k
zk

j
k

∑k λ k
j

} yi
j =

λ i
j

γ
(3)

upload capacity of the system, Equation (3) generalizes this, considering also that
the bandwidth constraint can be at the download capacity of peers.

Based on this model, we want to minimize the average download time of the
system, making an efficient use of resources, trying to find an optimal distribution
of files in super-peers nodes. The average download time for any downloader at

steady state can be computed applying Little’s law: T i
j =

xi
j

λ i
j
. Then, our problem can

now be written as a Combinatorial Optimization Problem (COP), where we have to
add new data:
- E p

j indicates if the super-peer p has a copy of video j (p can seed video j). E p
j is

either 0 or 1: 1 if p has video j, 0 otherwise.
- Sp is the storage capacity of super-peer p (in kbits).

The optimization problem is shown in Figure 2.

4 Pablo Rodrı́guez-Bocca and Claudia Rostagnol

min
E p

j

K

∑
j=1

K

∑
i=1

λ
i
jT

i
j = min

E p
j

K

∑
j=1

K

∑
i=1

xi
j

s.t.

(1)∑
j

E p
j s j ≤ Sp ∀p (2)∑

p
E p

j ≥ 2 ∀ j (3)∑
k

zk
j

k
≤ (

c
µ
−η)∑

k

xk
j

k
−∑

k

yk
j

k
∀ j (4) zi

j = ∑
p

zi,p
j ∀i, j

(5) ui,p =

∣∣∣∣∣∑l
E p

l − i

∣∣∣∣∣ ∀i, p (6) zi,p
j ≥ E p

j −ui,p ∀i, j, p (7) E p
j ∈ {0,1},z

i
j ∈ {0,P},z

i,p
j ∈ {0,1},u

i,p ∈ R+ ∀i, j, p

Fig. 2 Combinatorial Optimization Problem

The problem constraint (1) indicates that no super-peers can store more videos
than its storage capacity. Additionally, in constraint (2) we define that each video
must have at least one replica (each video must be stored in at least 2 super-peers).
Also, the number of video replicas is limited by the peers’ download capacities and
the seeders’ upload capacities for this video, as described in constraint (3). Finally,
zi

j can be computed from E p
j as the number of super-peers that hosts content j and

other i−1 contents. Constraints (4)-(7) specify this relationship between zi
j and E p

j

using some auxiliary variables (zi,p
j and ui,p).

3 Model optimization based on GRASP

Considering that the number of feasible solutions of the problem increases a lot with
the size of the problem’ instance, we will use a metaheuristic approach in order to
solve it (we did not a complexity analysis of the problem at this time). GRASP [4]
is a wellknown metaheuristic that we have been successfully using to solve other
similar hard COPs [2]. It is an iterative process which operates in two phases. In the
Construction Phase an initial feasible solution is built, whose neighborhood is then
explored in the Local Search Phase. In Figure 3 we present a GRASP customiza-
tion to solve our problem. During construction phase we must distribute the video
files in the super-peers taking into account the constraints of the problem. First, we
sort the files depending on their sizes, starting by the largest one. Then, we select
the 20% larger files (not copied yet) to create the Restricted Candidate List (RCL),
and choose one of them randomly to be put in at least two super-peers (selecting
super-peers with more storage capacity first). The pseudo-code for this construc-
tion phase is shown in Figure 3(a). To improve the solution constructed in the first
phase, a local search is applied as second phase. The improvement can be done in
2 ways, applying only one per iteration, selected randomly (both without breaking
the problem constraints): (a) inserting a new copy of video k in the super-peer sp;
(b) swaping two videos k1 and k2 from two super-peers spA y spB. The pseudo-code
for this local search phase is shown in Figure 3(b).

Optimal Download Time in a cloud-assisted Peer-to-Peer Video on Demand service 5

Procedure RandomGreedy
Input: data0

1: x← emptySolution(data0)
2: RCL = biggerFiles(data0 ,x,20%)
2: i = randomSelect(RCL)
3: while i > 0 do
4: sp1 ← fstBestSP(data0 ,x, i)
5: x← x

⋃
Copy(i,sp1)

5: if checkRestrictions()
6: sp2 ← sndBestSP(data0 ,x, i)
7: if checkRestrictions()
8: x← x

⋃
Copy(i,sp2)

9: else
10: x← x

⋃
Remove(i,sp2)

11: end if
12: else
13: x← x

⋃
Remove(i,sp1)

14: end if

15: RCL = biggerFiles(data0 ,x,20%)
16: i = randomSelect(RCL)
17: end while
18: return x

(a) Construction phase

Procedure LocalSearch
Input: x

1: x∗ ← clone(x)
2: i← 0
3: while i≤ imax do
4: xtemp ← randomChange(x)
5: if evaluate(x)< evaluate(x∗)
6: x∗ ← xtemp
7: i = 0
8: else
9: i++
10: end if
11: x← xtemp
12: end while
13: return x∗

(b) Local Search phase

Fig. 3 Pseudo-cide for GRASP phases

4 Numerical Results and Discussion

We implement the COP in Matlab, and we calibrate the GRASP algorithm with
generated instances. In this paper we present an application into a real scenario in
order to show its potential. Using real information got from a local Internet Video-
on-Demand Service Provider we construct a real scenario. From the log information
of this service, we obtained the popularity and the size of the available video content.
Specifically, our scenario has more than 700 videos (K), with an average size of 23
MB (s), 4 super-peers (P) with 100 GB of storage (S) and an upload rate of 80
Mbps (ρ), a peer download rate of 8 Mbps (c), and 4 Mbps of upload (µ), using
an effectiveness of 50% (η = 0.5), having a seeders departure rate of 1 every 10
seconds (γ = 0.1).

 0

 20

 40

 60

 80

 100

 120

 140

 0 100 200 300 400 500 600 700 800

A
v
e

ra
g

e
 d

o
w

n
lo

a
d

 t
im

e
 (

s
)

Requests per second

Requests and average download time

Average download time for ideal system
Average download time for P2P system

(a) Average download time

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 100 200 300 400 500 600 700 800

C
O

P
 o

b
je

c
ti
v
e

Requests per second

Requests and COP objective function

COP objective for ideal system
COP objective for P2P system

(b) COP objective function

Fig. 4 Comparing ideal system and P2P system

A lower boundary of the average download time can be computed as the time
needed in a system with free upload capacity (i.e. when the download time is deter-
mined by the peers download rate). In this ideal scenario, the number of download-

6 Pablo Rodrı́guez-Bocca and Claudia Rostagnol

ers is xideal
i
j =

λ i
j is j
c and Tideal

i
j =

xideal
i
j

λ i
j

. With data provided above, we computed an

average ideal time of 23.1 seconds.
In order to determine the scalability of the service, we stress the system keeping

the popularity proportional with the real data (i.e. multiplying the real λ by an in-
cremental factor). These results are shown on Figure 4(a), where we can see that our
P2P system is a bit far from the ideal system (3 times worse), but it is very scalable
since the performance is stable regarding to the increment of requests. With 163 re-
quests per second the average download time is 67 seconds, while with 816 requests
the average time is 73 seconds. In Figure 4(b) we show the evolution of the COP
objective function for the ideal system and for the P2P system. Notice that to reach
the same level of service (the same average download time) in a client-server system
we should increase the number of servers (or super-peers) proportionally with the
end-user requests, while in the P2P system we have a natural scalability with the
growing resources offered by the users (downloaders and seeders).

Therefore, we can conclude that our P2P solution is a good and very scalable ap-
proach. Although in this scenario we have a solution 3 times worse, it is better than
a client-server option where we should increase the number of servers depending
on the number of client requests. We also expect that the efficiency will be more
evident in largest deployments.

Currently, we are working to include this model inside the GoalBit platform to
test it in a real production scenario.

References

1. Bertinat, M.E., Vera, D.D., Padula, D., Robledo, F., Rodrı́guez-Bocca, P., Romero, P., Rubino,
G.: Goalbit: The first free and open source peer-to-peer streaming network. In: Proceedings
of the 5th international IFIP/ACM Latin American conference on Networking (LANC’09), pp.
83–93. ACM, New York, USA (2009)

2. Martı́nez, M., Morón, A., Robledo, F., Rodrı́guez-Bocca, P., Cancela, H., Rubino, G.: A GRASP
algorithm using RNN for solving dynamics in a P2P live video streaming network. In: 8th
International Conference on Hybrid Intelligent Systems (HIS’08). Barcelona, Spain (2008).
URL http://his2008.lsi.upc.edu/

3. Qiu, D., Srikant, R.: Modeling and performance analysis of bittorrent-like peer-to-peer net-
works. In: Proceedings of SIGCOMM’04, pp. 367–378. ACM, ACM, New York, NY, USA
(2004). DOI http://doi.acm.org/10.1145/1015467.1015508

4. Resende, M.G.C., Ribeiro, C.C.: Greedy Randomized Adaptive Search Procedures. In F. Glover
and G. Kochenberger, editors, Handbook of Methaheuristics, Kluwer Academic Publishers
(2003)

5. Tian, Y., Wu, D., Ng, K.W.: Analyzing multiple file downloading in bittorrent. In: Proceedings
of ICPP’06, pp. 297–306. IEEE (2006). DOI 10.1109/ICPP.2006.23

