
 1

Optimization of cache expiration dates
in content networks

Héctor Cancela
Universidad de la República, Uruguay

J. Herrera y Reissig 565
 Montevideo, Uruguay

+598-2-7114244 ext. 113
cancela@fing.edu.uy

Pablo Rodríguez-Bocca
Universidad de la República, Uruguay

J. Herrera y Reissig 565
 Montevideo, Uruguay

+598-2-7114244 ext. 113
prbocca@fing.edu.uy

ABSTRACT
One of the fundamental decisions in content networks is
how the information about the existing contents is deployed
and accessed. In particular, in many content network
architectures, there are access nodes which cache
information about the contents location, in order to ensure
a quick answer to queries formulated from the peer nodes.

In this work we present a simplified model of the costs and
restrictions associated with these cache expiration dates in
a content network, which regulate the proportion of queries
which will be answered on the basis of cached information,
vs. those which will give rise to additional searches in the
network backbone.

This model gives rise to a mathematical programming
formulation which can be useful to determine the optimal
cache expiration dates in order to maximize the total
information discovered, while respecting the operational
constraints of the network. We apply the model to DNS
data to obtain some insights about the behavior of the
model and the optimization procedures.

1. INTRODUCTION
A content network is a network where the addressing and
the routing of the information is based on the content
description, instead of on its physical or logical location
[7][8][10]. Content networks are usually virtual networks
based over the IP infrastructure of Internet or of a
corporative network, and use mechanisms to allow
accessing a content when there is no fixed, single, link
between the content and the host or the hosts where this
content is located. Even more, the content is usually subject
to re-allocations, replications, and even deletions from the
different nodes of the network.

In the last years many different kinds of content networks
have been developed and deployed in widely varying
contexts: they include peer-to-peer networks, collaborative
networks, cooperative Web caching, content distribution

networks, subscribe-publish networks, content-based
sensor networks, backup networks, distributed computing,
instant messaging, and multiplayer games. The ability of
content networks to take into account different application
requirements and to gracefully scale with the number of
users have been a main factor in this growth [14][15][16].

As we have previously discussed, in a content network the
addressing and routing are based on the content
description, instead of on its location. This means that
every content network is actually a knowledge network,
where the knowledge is the information about the location
of the nodes where each specific content is to be found: this
is "meta-information", in the sense of being the information
about the information contents themselves.

The objective of the network is to be able to answer each
content query with the most complete possible set of nodes
where this content is to be found; this corresponds to
discover the content location in the most effective and
efficient possible way.

As both nodes and contents are continuously going in and
out of the network, the task of maintaining updated the
network meta-information is very difficult and represents
an important communication cost. In this context, cache
nodes are used to hold the available meta-information; as
this information is continuously getting outdated, the cache
nodes must decide when to discard it, which means
increasing communication overhead for the sake of
improving the quality of the answers.

These last years have seen an explosion on the design and
deployment of different kinds of content networks, in most
cases without a clear understanding of the interaction
between the network components neither of the tuning of
the network architecture and parameters to ensure
robustness and scalability and to improve performances.
This in turn has lead to a still small but growing number of
empirical studies (based on large number of observations
of a given network activity) [6][16][18][19][23], and of
analytical models which can be fitted to the observations in

 2

order to better understand and eventually to predict
different aspects of network behavior [3][14][15][20][21].

In this work, we develop a simplified model of a content
network, and in particular of the number of correct answers
to a query as a function of the information expiration times
used at the cache nodes, presented in Section 2; to the best
of our knowledge, this is an aspect that has not been
previously treated analytically in the literature. This model
gives rise to a mathematical programming formulation
discussed in Section 3, which can be used to find the
expiration times maximizing the correct answers to the
queries received; a numerical illustration is shown in
Section 4, followed by some conclusions in Section 5.

2. CONTENT CACHING PROBLEM
FORMULATION

This section formalizes the problem of caching meta-
information in a content network in order to maximize the
number of correct answers to the queries, while respecting
the bandwidth constraints.

2.1 Network components description

Figure 1 presents a graphical representation of a content
network composed of source nodes and querying nodes
(which may actually coincide), of cache nodes (also called
aggregation nodes), and of a backbone (which will not be
modeled in detail). This is a conceptual division, which not
necessarily has a correspondence at the equipment level, as
the same computer may act at the same time as a source
node, a querying node, a cache node, and a backbone node.
The contents hosted in the network belong to a given set C,
which is partitioned into K content classes, such that if two
contents belong to the same class, all their parameters are
identical (KCCCC ∪∪= ...21); we denote by kl the

number of contents of this class: []KklC kk ..1 ∈∀= . The

total number of contents in the network is then:

∑∑
∈∈

==
Kk

k
Kk

k lCC .

We will look at the steady state behavior of the content
network, so that we will not need to explicitly model time.
This hypothesis can be justified by the fact that the rates of
content locations changes and the rates of cache turnovers
expiration times are usually much faster than the changes
in the statistical properties of the user population.

Figure 1: Simplified view of a content network

The users of the network will query about each content
belonging to class k with query frequencykf . We suppose

that the number of users is large enough so that for each
content, the queries follow a Poisson process of rate kf

This means that ()TSk , the number of queries for each

content of class k in a given time interval T, will have the
following distribution:

()() () +
−

ℜ∈∀ℵ∈∀∈∀== TnCk
n

eTf
nTSp

Tfn
k

k

k

,,
!

.

Also
kST , the time between two consecutive queries for

each different content in class k, will be an exponentially
distributed random variable with parameter kf :

()




<
≥−

=≤
−

 0 t0

0 t1 tf

S

k

k

e
tTp ,

{ }
k

SS fTT
kk

1=Ε= .

The contents will be located in the source nodes; each
source node decides when to start and when to end lodging
the different contents. This leads to a different birth-and-
death process for each content of class k, which we will
suppose will be of ∞M/M/ type and parameters kλ and

kµ (respectively, the rates of start and end of lodgment of a

content of class k at a source node); if we suppose that at
moment 0t the network is in stationary state, and ()0tAk is

the (random) number of source nodes lodging content k at

0t we have that:

 3

()() .,
!0 ℵ∈∀∈∀








==

−

nCk
n

e
ntAp

k

kn

k

k

k

µ
λ

µ
λ

.

From this distribution, we can find the expected number of
source nodes lodging content k (i.e., the expected number
of times this content will be replicated in the network):

(){ } ()()

() ()

.

!1!1

.

1

1

1

0
00

k

k

k

k

n

n

k

k

k

k

n

n

k

k

n
kkk

k

k

k

k

k

k

k

k

ee

n
e

n

e

ntApntAA

µ
λ

µ
λ

µ
λ

µ
λµ

λ

µ
λ

µ
λ

µ
λ

µ
λ

=





=

=
−















=

−









=

===Ε=

−

≥

−

−

≥

−

≥
=

∑∑

∑

In general, querying nodes are not able to search directly in
the backbone, and usually connect to at least one
aggregation node in order to route their queries. The
aggregation node concentrates all queries of its connected
nodes and consults the backbone when it is not able to
directly answer the queries received. One of the objectives
of having aggregation nodes is to minimize the number of
searches in the backbone; to do this, aggregation nodes
maintain a cache of the results of recent queries, and are
then also called cache nodes. The behavior of a cache node
is very simple: when a query over content k arrives, if the
answer is present in the cache it is returned; otherwise, the
cache node starts a search in the backbone to obtain the
information and answer the query; this information is then
stored in the cache, for a prefixed time kd , afterwards it

expires.

One of the reasons for deleting out-dated information is
that the results of a query will only be valid for a given
time interval, as the nodes which hosted this content can
disconnect or delete the content of interest, and new nodes
can connect or start to publish the content. Suppose the
cache node queried the backbone at time 0t for a given

content of class k and received in answer the information
about ()0tAk source nodes which hosted this content at that

time. From then on, we can consider that the number of
valid locations for this content known to the cache node
will evolve like a stochastic pure-death process, with death
parameter kµ , as the source nodes will disconnect or

delete the contents, until a new query is routed to the
backbone.

Queries

Backbone searches

Time

Answer is in the cache

Answer is not in the cache

Queries

Backbone searches

Figure 2 – cyclic behavior at cache nodes.

We can then compute the mean number of valid locations of a
given content known by a cache node at time 0t + t when the last

query answered by the backbone has been at time 0t :

()() ()

()() () ()

()

.

!1

!1
.

.

query backbonelast the

after units time locations

content validofnumber mean

1

1

10
0

0
000

t

k

kt

k

k

n

n

k

k

t

k

k

n

t

n

k

k

n
Vk

n
VVk

kk

k

kk

k

kk

k

k

k

k

k

kk

eeee

n
ee

e
n

e
tTpntApn

tTttTpntApn

t

µµ
λ

µµ
λ

µµ
λ

µ

µ
λ

µ
λ

µ
λ

µ
λ

µ
λ

µ
λ

−−−

≥

−

−−

≥

−

−

≥

≥

=





=

=
−















=

=
−









=>==

=>+>==

=
















∑

∑∑

∑

The cache node follows a cyclic behaviour, starting with a
first query of a content of class k, leading to a backbone
search; following with a period of fixed durationkd , where

all queries arriving are answered using the information
present in the cache; and then, after the expiration of the
cache contents, a period of random duration, until a new
query for this particular content arrives, re-starting the
cycle again. By the hypothesis of Poisson arrivals for
queries, this last period follows an exponential distribution
of parameter kf (the query frequency). Figure 2 shows a

scheme of this cycle, where we denote by kC dT
k

= the

period where the contents are cached, and by
kNCT the

period where the contents are not cached. The mean length

 4

of the cycle is then
k

k fd 1+ ; in each cycle there is only a

single search in the backbone (when the cycle starts), this
can be used to compute the rate of backbone searches as
follows:

()

.
11

1

 timecycle total

searches #
 unit per time searches backbone

kk

k

k
k

fd

f

fd +
=

+
=

==

As the query frequency is fixed externally, the only free
variables we can adjust at cache nodes to define their
behavior are the content expiration dates kd for every

content of class k.

2.2 Bandwidth constraints
Cache nodes have input and output bandwidth constraints,
which can limit the number of queries they can receive,
process, answer and eventually pass on to the backbone.
We will try to formulate these constraints in terms of the
previously defined parameters and of the free variables kd .

We denote by INBW and OUTBW the maximum input and

output bandwidth a cache node is able to employ. We
suppose that each query the cache nodes receive employs

Sβ bytes in mean and that its answer employs Sα bytes per

location information to be sent (then, the answer varies in
size depending the number of known node locations where
a content is stored). We also use other additional
parameters: Bβ , the message size of queries to be sent to

the backbone, and Bα the message size per location of the

answers received from the backbone.

Then, the input bandwidth to be used by the cache node
corresponds to the sum of the size of the queries received
from the querying nodes (at a rate kf per content of class

k), and of the answers sent by the backbone when queried
about a specific content. As we know that the backbone

search frequency is
kk

k

fd

f

+1
, and the mean number of

backbone locations for each content of class k is

k

k
kA µ

λ= , taking into account that there kl contents

belonging to class k , we arrive to the following formula:

.
1

bandwidth)(input ∑∑
∈∈ +

+=
Kk k

k

kk

kk
B

Kk
kkS fd

fl
fl

µ
λ

αβ .

Similarly, the output bandwidth corresponds to the sum of
the queries transmitted to the backbone plus the content
locations answered to the querying nodes in response to
their queries, leading to the formulation

 () ∑∑
∈∈ +

+=
Ck kk

kk
B

Ck
kkkS fd

fl
Afl

1
bandwidthoutput βα .

We can then formulate the bandwidth constraints as
follows:

IN
Ck

k
kk

kk
B

Ck
kkS BWA

fd

fl
fl ≤

+
+ ∑∑

∈∈ 1
αβ ,

OUT
Ck kk

kk
B

Ck
kkkS BW

fd

fl
Afl ≤

+
+ ∑∑

∈∈ 1
βα .

2.3 Expected number of correct answers
The network primary objective is to be able to give the
most complete and correct information to the queries
received. To formalize this objective, we develop an
expression for the number of correct answers (i.e., the
number of valid content locations) answered to the
querying nodes. In particular, if we denote by kR the

random variable corresponding to the number of content
locations answered to a query for a content of class k, we
want to compute its expected value

kR . We know that

during a cache node cycle, there will be at least one query
(at the start of the cycle), and a random number of
additional queries during the period where the content
locations are stored in the cache, of duration kd (as when

the cache contents expire, the first query arriving will lead
to the start of a new cycle). This leads for each content of
class k to the following formulation:

{ }
{ } ()

{ } ()

{ } { }
().queries add.

1

queries add.

queries additional 0

queries additional queries additional

1

1
,,

,

0

∑
∑

∑

≥

=

≥



















+

Ε+Ε

+Ε=

=Ε=
=Ε=

n

n

m
CmkNCk

NCk

n
k

kk

np
n

nRR

pR

npnR

RR

where NCkR , is the answer to the initial query (transmitted

to the backbone, and whose answers are stored in the
cache), and CnkCk RR ,1, ... are the answers to the following

queries during the time period starting with the first query
and of duration kd .

The expected number of correct responses to the first query
is exactly the expected number of nodes hosting the

contents, { }
k

k
kNCk AR

µ
λ==Ε , .

For the following queries, we use on one hand the fact that
query arrivals follow a Poisson process of ratekf , so that

 5

the probability of observing n arrivals during a time
interval of length kd is:

()() () +
−

ℜ∈∀ℵ∈∀∈∀== k

dfn
kk

kk dnCk
n

edf
ndSp

kk

,,
!

.

On the other hand, it is a well-known fact (see for instance
the discussion in [5]) that the distribution of the arrivals of
a Poisson process within a fixed interval follows a uniform
distribution. As a result, the expectation of the number of
correct answers given to the queries during this interval
will be equal to the mean number of valid content locations
in the interval. As the number of valid locations known at

time t after the last query is equal to t

k

k ke µ

µ
λ − , then its mean

over the interval of duration kd is

()

1

.

2

0

2

0

kk

k

k
k

k

d

kk

k

k

d

t

k

k

k

d
t

k

k

e
d

d

e

d

dte

µ

µµ

µ
λ

µ
λ

µ
λ

−

−−

−=

=

−

=
∫

.

Then we have that:

{ }

(]

() . 1

, interval timein the node cache

 theknown to locations validofnumber mean

queries

2

00

1
,

Cke
d

n

dtt
n

nR

kkd

kk

k

k

n

m
Cmk

∈∀−=

=








+
=

=Ε

−

=
∑

µ

µ
λ

Combining all these results, we find

{ } { } ()

{ } ()

{ } { }
()

() () =



















+

−+
=

=


















+

Ε+Ε

+Ε=

=Ε=Ε=

∑

∑
∑

∑

≥

−
−

≥

=

≥

0

2

1

1
,,

,

0

!1

1

queries
1

queries

queries 0

queries queries

n

dfn
kk

d

kk

k

k

k

n

n

m
CmkNCk

NCk

n
kkk

n

edf

n

e
d

n

np
n

nRR

pR

npnRRR

kk

kkµ

µ
λ

µ
λ

()
() () ()

()
() () ()

() () ()() .11
1

11

1
1

1

!1
1

!1

2

2

0
2

0









−−−−+−=

=






 −−−+−=

=
+

−+
+

=

−−−−

−−−

≥

−−

≥

− ∑∑

kkkkkkkk

kk

kkkkkk

kk

kk

kkkkkk

ddf

k

d
k

df
k

kkk

k

kk

df
dfddf

kk

k

kk

df
df

k

k

n

n
kkddf

kk

k

n

n
kkdf

k

k

ee
d

efe
df

df

e
eee

ddf

e
e

n

df
nee

dn

df
e

µµ

µ

µ

µ
µ

λ

µ
λ

µ
λ

µ
λ

µ
λ

Finally, we can compute the expected number of correct
answers taking into account all contents; this is the function
we would like to maximize:

() () ()()∑

∑

∈

−−−−

∈









−−−−+−=

=

Ck

ddf

k

d
k

df
k

kk

kk

Ck
kkk

kkkkkkkk ee
d

efe
d

l

flR

µµµ
µ

λ
11

1
112

2.4 Mathematical programming formulation
If we put together the network objective and the bandwidth
restrictions discussed in the previous section, we arrive to
the following formulation of our CCP problem:

() () ()()∑
∈

−−−−

ℜ∈








−−−−+−

+
Kk

ddf

k

d
k

df
k

kk

kk

d

kkkkkkkk

k

ee
d

efe
d

l µµµ
µ

λ
11

1
11max

2

s.t.

IN
Kk k

k

kk

kk
B

Kk
kkS BW

fd

fl
fl ≤

+
+ ∑∑

∈∈ µ
λαβ

1

OUT
Kk kk

kk
B

Kk k

k
kkS BW

fd

fl
fl ≤

+
+ ∑∑

∈∈ 1
β

µ
λ

α

 for ariables,decision v Kkdk ∈ℜ∈ +

KBWBWfl OUTINBSBSkkkk ∈∀ℜ∈ + k ,,,,,,,,, ββααµλ .

This is a non-linear optimization problem, both in the
restrictions and in the objective function. If we study it in
detail, we can see that both the feasible solution space and
the objective function are convex. As the problem is stated
as a maximization one, a convex objective function will in
general lead to multiple local optima.

3. A CASE STUDY ILLUSTRATION
In order to apply framework that we have presented to a
given network, it is necessary to obtain from measurements
or previous studies the information about the parameters of
the class contents. The case of the Gnutella peer-to-peer
(P2P) file sharing network has been developed as part of the
MSc. Thesis of one of the authors of the present paper
[17]. In the following section, we look at the DNS (Domain
Name System) [11][12], which is the system used on
Internet in order to map symbolic domain names (such as

 6

www.fing.edu.uy) into IP addresses corresponding to
actual computers in the network (such as 164.73.32.3).
The network actually modeled corresponds to the .uy
(Uruguay) subdomain of Internet, and the parameters used
are based on real data obtained thanks to the support of
ANTEL (Administración Nacional de Telecomunicaciones,
www.antel.com.uy), which is a state-owned company, and
the largest telco in Uruguay.

3.1 Parameters for the DNS network.
DNS (Domain Name System) can be seen as a content
network with hierarchical distribution, where the
information consistency is one of the most important
objectives. DNS is based on a network of recursive servers,
which pass on queries until finding authoritative answers,
which minimize the probability of information
inconsistency (even if the correctness cannot be completely
guaranteed).

In our case, we are interested in recursive servers, which
correspond to the aggregation nodes of our general model.
We collected real data from the recursive servers at
ANTEL, which daily serve hundreds of thousands users,
with daily peak query rates of approximately 1800 queries
per second. The parameters of the model are summarized
in Table 1.

Parameters Values

C : number of different contents 220107

f : average content query rate
Empirical

distribution (heavy
tailed, see Figure 3)

λ : average content storage rate 0.8361 hr-1

µ : average content location

validity rate
0.5158 hr-1

Sα : size of a the answer to a

content query
169.6 bytes

Bα : size of the answer of a

backbone search
1150.3 bytes

Sβ : size of a content query 80.45 bytes

Bβ : size of a backbone search

packet
385.6 bytes

INBW : input bandwidth 1.933×108 bytes/hr.

OUTBW : output bandwidth 3.445×108 bytes/hr.

Table 1: parameter values for the case study.

As previously discussed, in our study we only took into
account the behavior of the Uruguayan domains, i.e., those
whose names finish by .uy.

We collected 10 consecutive days of recursive server logs,
in order to estimate the total number of contents and the
distribution of query rates. ANTEL DNS infrastructure

employs the BIND software (Berkeley Internet name
domain, by Internet Software Consortium,
http://www.isc.org/products/BIND), which was very useful
as the logs it collects contain very detailed information.
The log files were processed using a BerkeleyDB data base
(Sleepycat Software Inc.. http://www.sleepycat.com/) to
obtain the statistics of the domain queries.

1

10

100

1000

10000

100000

1000000

1

50
01

10
00

1

15
00

1

20
00

1

25
00

1

30
00

1

Content id.

Q
ue

ry
 f

re
q

ue
nc

y

Figure 3: domain query rates distribution (tail cut off).

The largest part of the .uy domains actually belong to the
.com.uy zone, which is administered by ANTEL. We
took the historical information of the domain changes
between October 2003 and October 2005; this information
was used to compute overall storage and validity rates for
the contents.

To compute the mean packet sizes, we also collected
information about the packets transmitted and received by a
DNS recursive server (in this case, a 15 minutes detailed
sample provided us with enough information). Table 2
shows the measurements, which were the basis for
computing the Alfa and Beta parameters shown on Table 1

 Number Total bytes
transmitted.

Number of
registers

Queries 366148 29458160 402098

Answer to
queries

168530 40089683 236386

Backbone
searches

61481 5594012 293552

Answers to
backbone
searches

56442 10774381 293552

Table 2: statistics for packet sizes.

Finally, in the case of ANTEL recursive servers, the
bandwidth limitation is actually driven by the CPU
processing power, which limits the number of queries that
may be processed by time unit.

 7

In our case, the empirical measurements result in
bytes/hr 193305600kbps 419.5 ==INBW

and bytes/hr 344494080kbps 747.6 ==OUTBW .

3.2 Numerical results.
The data collection discussed in the previous section
resulted in obtaining detailed query rate information for
each of the 220107 contents observed. A possibility would
be to create a content class of cardinality 1 for each
different content, this would lead to a large non-linear
problem in 220107 independent variables. As an
alternative, we cluster the contents into a small number of
content classes, where in each class we will include
contents with equal or at least similar query rates. As it is
not a-priori clear what is the best number of classes to use,
we experimented with five different values, namely 2, 8,
16, 32, and 128 classes.

In order to solve the different problems formulated, we
used AMPL [2], an algebraic modeling language for
mathematical programming problems, in conjunction with
MINOS (version 5.5) [13], an optimization solver. In the
Appendix, we give some examples of how the optimization
problem is formulated in terms of the AMPL language, and
of the commands to be used to find a numerical solution.

All experiments were run on a PIII 800 MHz computer,
with 320 Mb RAM space. The results obtained are
summarized in Table 3. The objective function has been
normalized, using a tight upper bound, so that the values
can be compared directly. Among other observations, we
can see that when the number of classes grows, the
available resources are being increasingly used. Also, the
computational times required to solve the model grow,
albeit they remain very modest.

Number
of

content
classes

Normalized
Objective
function

Execution
time (secs.)

Input
bandwidth
employed
(bytes/hr)

Output
bandwidth
employed
(bytes/hr)

2 0. 969623 0.000 193305400 77163700

8 0. 982216 0.020 193305400 77163700

16 0. 997218 0.060 193305400 77163700

32 0. 999742 0.120 193305400 77163700

128 0. 999919 0.347 193305400 77163700

Table 3: Results for different number of content
classes.

As we are dealing with aggregated data, it is important to
translate back the results into the terms of the original
problem. In particular, we now consider again the 220107
different contents, and we evaluate the number of correct

answers to queries if we use for each content the cache
expiration times given by the optimization models. Table 4
summarizes this comparison.

Number
of
classes

Normalized objective
function for the
aggregated problem

Normalized objective
function for the
original problem

2 0.96962300 0.88249787

8 0.98221600 0.95332949

16 0.99721800 0.99412569

32 0.99974200 0.99966787

128 0.99991900 0.99991900

 Table 4: Discrepancies between objective functions for
original and aggregated models.

From this table, we can see that if the number of classes is
too low, then the approximation error incurred in the
aggregated model is very large, and the percentage of
correct answers to queries in the real problem will be much
below the nominal values computed by the optimization
procedure. This discrepancy gets very quickly irrelevant
when the number of classes increase, when we have 128
classes the results coincide.

4. CONCLUSIONS
This paper discusses the impact that cache expiration times
have on the behavior of aggregation nodes in a content
network. In particular, we present a simplified model to
evaluate the total number of correct answers given to
content queries, and to evaluate the bandwidth usage. On
the basis of this simplified model, we present a
mathematical programming formulation, which allows to
find optimal values for the cache expiration times in order
to maximize the number of correct answers, subject to
bandwidth limitations. We have also studied as a particular
case the DNS system, in particular for the case of the .uy
Internet domain; a comprehensive data collection program
has allowed us to obtain the numerical parameters needed
to instantiate the optimization model and obtain the
corresponding results for the cache expiration dates. The
results show that the computational requirements are
modest, and that using data with relatively high
aggregation we can obtain high performance levels. We
think that models of this kind lead to improved
understanding of the behavior of content networks, and can
be used to test their performance in a wide variety of
potential scenarios, which are difficult to test in practice.

Future work includes using the model with test cases
corresponding to additional content networks of different
characteristics. It is also possible to refine the model to take
into account additional features (for example, the search
answer packet sizes could be divided into a fixed part plus

 8

a variable, per location answered, part; additional
constraints could be added to represent particular features
of specific networks). Another interesting point is doing a
more detailed analysis of the impact of the number of
content classes chosen on the quality of the results
obtained, as well as on the computational requirements
imposed by the solution methods. Finally, a more difficult
challenge is to integrate backbone behavior details into this
model, in order to have a more wide perspective on the
tradeoffs between information publication and search in a
content network.

5. ACKNOWLEDGMENTS
This research has been partially supported by CNPq,

Project PROSUL- Proc. no. 490333/04-4, by INRIA
associated teams program (team PAIR), and by MEC/BID
PDT program, Projects S/C/IF/29/37 and S/C/OP/17/03.
We also gratefully acknowledge the support of ANTEL for
the DNS data collection exercise.

6. REFERENCES
[1] Chu J., Labonte K., and Levine, B., "Availability and locality

measurements of peer-to-peer file systems," in ITCom:
Scalability and Traffic Control in IP Networks. Proceedings
of SPIE, Vol. 4868, July 2002.

 [2] Fourer, R., Gay, D.M, and. Kernighan, B.W. AMPL: A
Modeling Language for Mathematical Programming.
Duxbury Press / Brooks/Cole Publishing Company, 2002.

[3] Ge, Z., Figueiredo D., Jaiswal S., Kurose J., Towsley D. Z.
Ge, D. R. Figueiredo, S. Jaiswal, J. Kurose, and D. Towsley,
"Modeling Peer-Peer File Sharing Systems", Proc. of 22nd
IEEE Infocom, 2003.

[4] Gummadi K., Dunn R., Saroiu S., Gribble S., Levy H., and
Zahorjan J. Measurement, Modeling and Analysis of a Peer-
to-Peer File-Sharing Workload. Proceedings of the 19th
ACM Symposium of Operating Systems Principles (SOSP),
Bolton Landing, NY, October 2003.

[5] ITC, in cooperation with ITU-D SG2. Teletraffic Engineering
Handbook, Draft-version. www.tele.dtu.dk/teletraffic
(homepage maintained by V. B. Iversen; Last accessed 26
May 2005).

[6] Jovanovic, M., Scalability Issues in Large Peer-to-Peer
Networks - A Case Study of Gnutella. University of
Cincinnati Technical Report 2001. Available at
http://www.ececs.uc.edu/~mjovanov/Research/paper.html.

[7] H. T. Kung, et al. MotusNet: A Content Network. Technical
report. Harvard University. 2001.
http://citeseer.nj.nec.com/443175.html.

[8] Kung, H. T., and Wu, C. H. (2002). Content Networks:
Taxonomy and New Approaches. Chapter in The Internet as
a Large-Scale Complex System, Kihong Park and Walter
Willinger (Editors), Oxford University Press. 2002.

[9] Lv Q., Cao P., Cohen E., Li K., and Shenker S.. Search and
replication in unstructured peer-to-peer networks. In

Proceedings of the 16th annual ACM International
Conference on supercomputing, 2002.

[10] D. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja, J.
Pruyne, B. Richard, S. Rollins, Z. Xu. Peer-to-Peer
Computing. Techical report HPL-2002-57, HP Labs. 2002.
http://www.hpl.hp.com/techreports/2002/HPL-2002-57.html.

[11] Mockapetris, P.V. Internet Domain Name System Standard:
Domain names - concepts and facilities. Rfc-Editor Home
Page, ftp://ftp.rfc-editor.org/in-notes/rfc1034.txt, 1987.

[12] Mockapetris, P.V. Internet Domain Name System Standard:
Domain names - implementation and specification. Rfc-
Editor Home Page, ftp://ftp.rfc-editor.org/in-
notes/rfc1035.txt, 1987.

[13] Murtagh, B. A. and Saunders, M. A. MINOS 5.4 User's
Guide, Report SOL 83-20R, Systems Optimization
Laboratory, Stanford University, December 1983 (revised
February 1995).

[14] Pandurangan, G., Raghavan, P., and Upfal, E. Building Low-
Diameter P2P Networks. In Proceedings of the 42nd Annual
IEEE Symposium on the Foundations of Computer Science
(FOCS) (2001).

[15] Qiu, L., Padmanabham, V. N. , and Voelker, G. M. On the
placement of web server replicas. In Proc. 20th IEEE
INFOCOM, 2001.

[16] Ripeanu M., Foster I., and Iamnitchi A., Mapping the
Gnutella network: Properties of largescale peer-to-peer
systems and implications for system design, IEEE Internet
Computing Journal 6(1), 2002.

[17] Rodríguez-Bocca, P. Redes de Contenido: Taxonomía y
Modelos de evaluación y diseño de los mecanismos de
descubrimiento de contenido. MSc. Thesis, Facultad de
Ingenieria, Universidad de la República, Uruguay.

[18] Saroiu, S., Krishna Gummadi, P., and Gribble, S.D. A
Measurement Study of Peer-to-Peer File Sharing Systems. In
Proceedings of Multimedia Computing and Networking,
2002

[19] Sen, S. and Wong, J. Analyzing peer-to-peer traffic across
large networks.
http://citeseer.nj.nec.com/sen02analyzing.html

[20] Yang, B. and Garcia-Molina, H. Comparing hybrid peer-to-
peer systems. In Proceedings of VLDB'2001.

[21]Yang B. and Garcia-Molina H. Designing a super-peer
network.. 5.Technical Report, Stanford University, February
2002. http://dbpubs. stanford.edu:8090/pub/2002-13

[22] Yang, B. and Garcia-Molina, H. Designing a Super-Peer
Network. Proc. of the 19th Intl. Conf. on Data Engineering,
2003.

[23] Zeinalipour-Yazti, D. and Folias, T.. A Quantitative Analysis
of the Gnutella Network Traffic.Technical report,
Department of Computer Science University of California -
Riverside, CA 92507, USA
http://www.cs.ucr.edu/~csyiazti/cs204.html

 9

7. APPENDIX: AMPL code examples
We give here more information regarding the AMPL code
used for modeling and solving the problem instances.
Figure 4 corresponds to the model. Figure 4 contains the
AMPL commands used to solve the problem. Figure 6
shows the detailed data corresponding to the 2 class
instance.

Figure 4: AMPL model

Figure 5: AMPL commands

Figure 6: Detailed data for the two-class instance

option ampl_include '.';

option solver minos;
option minos_options 'crash_option=0 \
 feasibility_tolerance=1.0e-8 scale=no \
 summary_file=6 summary_frequency=5 \
 timing= 1';

model cccp.mod;
data cccp.dat;
solve;
display epsilon;
display bitsIn.lb, bitsIn.ub, bitsIn.body, bitsIn.slack;
display bitsOut.lb, bitsOut.ub, bitsOut.body,
bitsOut.slack;
display d;
expand bitsIn, bitsOut;

param K >=0, integer;
set CLASS = {1..K};
param f {k in CLASS};
param lamda {k in CLASS};
param mu {k in CLASS};
param l {k in CLASS};
param alphaS >=0;
param alphaB >=0;
param betaS >=0;
param betaB >=0;
param BWin >=0;
param BWout >=0;

var d {k in CLASS} >=0.000001 default 0.000001;

maximize epsilon:
 (sum {k in CLASS}
l[k]*lamda[k]/mu[k]/mu[k]/d[k]*(
 mu[k]*(1-exp(-f[k]*d[k])) +
 f[k]*(1-exp(-mu[k]*d[k])) -
 1/d[k]*(1-exp(-f[k]*d[k]))*
 (1-exp(-mu[k]*d[k]))))/

(sum {k in CLASS} l[k]*lamda[k]/mu[k]*f[k]);

subject to bitsIn :
 0 <= betaS*(sum {k in CLASS} l[k]*f[k]) +
 alphaB*(sum {k in CLASS}
l[k]*lamda[k]/mu[k]*f[k]/(1+d[k]*f[k]))
 <= BWin;

subject to bitsOut:
 0 <= alphaS*(sum {k in CLASS}
l[k]*lamda[k]/mu[k]*f[k]) +
 betaB*(sum {k in CLASS}
l[k]*f[k]/(1+d[k]*f[k]))
 <= BWout;

param K := 2;

param alphaS := 169.59400000;
param alphaB := 1150.25200000;
param betaS := 80.45400000;
param betaB := 385.55700000;
param BWin := 193305600.00000000;
param BWout := 344494080.00000000;

param f :=
 1 1059.31197749
 2 0.32706349;
param lamda :=
 1 0.83609821
 2 0.83609821;
param mu :=
 1 0.51581508
 2 0.51581509;
param l :=
 1 68.00000000
 2 220039.00000000;

