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ABSTRACT 
One of the fundamental decisions in content networks is 
how the information about the existing contents is deployed 
and accessed. In particular, in many content network 
architectures, there are access nodes which cache 
information about the contents location, in order to ensure 
a quick answer to queries formulated from the peer nodes.  

In this work we present a simplified model of the costs and 
restrictions associated with these cache expiration dates in 
a content network, which regulate the proportion of queries 
which will be answered on the basis of cached information, 
vs. those which will give rise to additional searches in the 
network backbone.  

This model gives rise to a mathematical programming 
formulation which can be useful to determine the optimal 
cache expiration dates in order to maximize the total 
information discovered, while respecting the operational 
constraints of the network. We apply the model to DNS 
data to obtain some insights about the behavior of the 
model and the optimization procedures.     
 

1. INTRODUCTION 
A content network is a network where the addressing and 
the routing of the information is based on the content 
description, instead of on its physical or logical location 
[7][8][10]. Content networks are usually virtual networks 
based over the IP infrastructure of Internet or of a 
corporative network, and use mechanisms to allow 
accessing a content when there is no fixed, single, link 
between the content and the host or the hosts where this 
content is located. Even more, the content is usually subject 
to re-allocations, replications, and even deletions from the 
different nodes of the network.  

In the last years many different kinds of content networks 
have been developed and deployed in widely varying 
contexts: they include peer-to-peer networks, collaborative 
networks, cooperative Web caching, content distribution 

networks, subscribe-publish networks, content-based 
sensor networks, backup networks, distributed computing, 
instant messaging, and multiplayer games. The ability of 
content networks to take into account different application 
requirements and to gracefully scale with the number of 
users have been a main factor in this growth [14][15][16].  

As we have previously discussed, in a content network the 
addressing and routing are based on the content 
description, instead of on its location. This means that 
every content network is actually a knowledge network, 
where the knowledge is the information about the location 
of the nodes where each specific content is to be found: this 
is "meta-information", in the sense of being the information 
about the information contents themselves. 

The objective of the network is to be able to answer each 
content query with the most complete possible set of nodes 
where this content is to be found; this corresponds to 
discover the content location in the most effective and 
efficient possible way. 

As both nodes and contents are continuously going in and 
out of the network, the task of maintaining updated the 
network meta-information is very difficult and represents 
an important communication cost. In this context, cache 
nodes are used to hold the available meta-information; as 
this information is continuously getting outdated, the cache 
nodes must decide when to discard it, which means 
increasing communication overhead for the sake of 
improving the quality of the answers. 

These last years have seen an explosion on the design and 
deployment of different kinds of content networks, in most 
cases without a clear understanding of the interaction 
between the network components neither of the tuning of 
the network architecture and parameters to ensure 
robustness and scalability and to improve performances. 
This in turn has lead to a still small but growing number of 
empirical studies (based on large number of observations 
of a given network activity) [6][16][18][19][23], and of 
analytical models which can be fitted to the observations in 
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order to better understand and eventually to predict 
different aspects of  network behavior  [3][14][15][20][21].  

In this work, we develop a simplified model of a content 
network, and in particular of the number of correct answers 
to a query as a function of the information expiration times 
used at the cache nodes, presented in Section 2; to the best 
of our knowledge, this is an aspect that has not been 
previously treated analytically in the literature. This model 
gives rise to a mathematical programming formulation 
discussed in Section 3, which can be used to find the 
expiration times maximizing the correct answers to the 
queries received; a numerical illustration is shown in 
Section 4, followed by some conclusions in Section 5. 

2. CONTENT CACHING PROBLEM 
FORMULATION  

This section formalizes the problem of caching meta-
information in a content network in order to maximize the 
number of correct answers to the queries, while respecting 
the bandwidth constraints.  

2.1 Network components description 

Figure 1 presents a graphical representation of a content 
network composed of source nodes and querying nodes 
(which may actually coincide), of cache nodes (also called 
aggregation nodes), and of a backbone (which will not be 
modeled in detail). This is a conceptual division, which not 
necessarily has a correspondence at the equipment level, as 
the same computer may act at the same time as a source 
node, a querying node, a cache node, and a backbone node. 
The contents hosted in the network belong to a given set C,  
which is partitioned into K content classes, such that if two 
contents belong to the same class, all their parameters are 
identical ( KCCCC ∪∪= ...21 ); we denote by kl  the 

number of contents of this class: [ ]KklC kk ..1 ∈∀= .  The 

total number of contents in the network is then: 

∑∑
∈∈

==
Kk

k
Kk

k lCC . 

We will look at the steady state behavior of the content 
network, so that we will not need to explicitly model time. 
This hypothesis can be justified by the fact that the rates of 
content locations changes and the rates of cache turnovers 
expiration times are usually much faster than the changes 
in the statistical properties of the user population. 

 

Figure 1: Simplified view of a content network 

The users of the network will query about each content 
belonging to class k with query frequencykf . We suppose 

that the number of users is large enough so that for each 
content, the queries follow a Poisson process of rate kf  

This means that ( )TSk , the number of queries for each 

content of class k in a given time interval T, will have the 
following distribution:  
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Also 
kST , the time between two consecutive queries for 

each different content in class k, will be an exponentially 
distributed random variable with parameter kf : 
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The contents will be located in the source nodes; each 
source node decides when to start and when to end lodging 
the different contents. This leads to a different birth-and-
death process for each content of class k, which we will 
suppose will be of ∞M/M/  type and parameters kλ and 

kµ (respectively, the rates of start and end of lodgment of a 

content of class k at a source node); if we suppose that at 
moment 0t  the network is in stationary state, and ( )0tAk  is 

the (random) number of source nodes lodging content k at 

0t  we have that: 
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From this distribution, we can find the expected number of 
source nodes lodging content k (i.e., the expected number 
of times this content will be replicated in the network): 

( ){ } ( )( )

( ) ( )

.            

!1!1
             

.

1

1

1

0
00

k

k

k

k

n

n

k

k

k

k

n

n

k

k

n
kkk

k

k

k

k

k

k

k

k

ee

n
e

n

e

ntApntAA

µ
λ

µ
λ

µ
λ

µ
λµ

λ

µ
λ

µ
λ

µ
λ

µ
λ

=





=

=
−















=

−









=

===Ε=

−

≥

−

−

≥

−

≥
=

∑∑

∑

 

In general, querying nodes are not able to search directly in 
the backbone, and usually connect to at least one 
aggregation node in order to route their queries. The 
aggregation node concentrates all queries of its connected 
nodes and consults the backbone when it is not able to 
directly answer the queries received. One of the objectives 
of having aggregation nodes is to minimize the number of 
searches in the backbone; to do this, aggregation nodes 
maintain a cache of the results of recent queries, and are 
then also called cache nodes. The behavior of a cache node 
is very simple: when a query over content k arrives, if the 
answer is present in the cache it is returned; otherwise, the 
cache node starts a search in the backbone to obtain the 
information and answer the query; this information is then 
stored in the cache, for a prefixed time kd , afterwards it 

expires.  

One of the reasons for deleting out-dated information is 
that the results of a query will only be valid for a given 
time interval, as the nodes which hosted this content can 
disconnect or delete the content of interest, and new nodes 
can connect or start to publish the content. Suppose the 
cache node queried the backbone at time 0t  for a given 

content of class k and received in answer the information 
about ( )0tAk  source nodes which hosted this content at that 

time. From then on, we can consider that the number of 
valid locations for this content known to the cache node 
will evolve like a stochastic pure-death process, with death 
parameter kµ , as the source nodes will disconnect or 

delete the contents, until a new query is routed to the 
backbone. 

Queries

Backbone searches

Time

Answer is in the cache

Answer is not in the cache

Queries

Backbone searches

 
Figure 2 – cyclic behavior at cache nodes. 

We can then compute the mean number of valid locations of a 
given content known by a cache node at time 0t + t when the last 

query answered by the backbone has been at time 0t : 

( )( ) ( )

( )( ) ( ) ( )

( )

.       

!1
        

!1
.     

.       

query  backbonelast  the

after units  time  locations

content     validofnumber mean 

1

1

10
0

0
000

t

k

kt

k

k

n

n

k

k

t

k

k

n

t

n

k

k

n
Vk

n
VVk

kk

k

kk

k

kk

k

k

k

k

k

kk

eeee

n
ee

e
n

e
tTpntApn

tTttTpntApn

t

µµ
λ

µµ
λ

µµ
λ

µ

µ
λ

µ
λ

µ
λ

µ
λ

µ
λ

µ
λ

−−−

≥

−

−−

≥

−

−

≥

≥

=





=

=
−















=

=
−









=>==

=>+>==

=
















∑

∑∑

∑

 

The cache node follows a cyclic behaviour, starting with a 
first query of a content of class k, leading to a backbone 
search; following with a period of fixed durationkd , where 

all queries arriving are answered using the information 
present in the cache; and then, after the expiration of the 
cache contents, a period of random duration, until a new 
query for this particular content arrives, re-starting the 
cycle again. By the hypothesis of Poisson arrivals for 
queries, this last period follows an exponential distribution 
of parameter kf  (the query frequency). Figure 2 shows a 

scheme of this cycle, where we denote by kC dT
k

= the 

period where the contents are cached, and by 
kNCT the 

period where the contents are not cached. The mean length 
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of the cycle is then 
k

k fd 1+ ; in each cycle there is only a 

single search in the backbone (when the cycle starts), this 
can be used to compute the rate of backbone searches as 
follows: 

( )
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As the query frequency is fixed externally, the only free 
variables we can adjust at cache nodes to define their 
behavior are the content expiration dates kd  for every 

content of class k.   

2.2 Bandwidth constraints  
Cache nodes have input and output bandwidth constraints, 
which can limit the number of queries they can receive, 
process, answer and eventually pass on to the backbone. 
We will try to formulate these constraints in terms of the 
previously defined parameters and of the free variables kd . 

We denote by INBW  and OUTBW  the maximum input and 

output bandwidth a cache node is able to employ. We 
suppose that each query the cache nodes receive employs 

Sβ bytes in mean and that its answer employs Sα bytes per 

location information to be sent (then, the answer varies in 
size depending the number of known node locations where 
a content is stored). We also use other additional 
parameters: Bβ , the message size of queries to be sent to 

the backbone, and Bα  the message size per location of the 

answers received from the backbone. 

Then, the input bandwidth to be used by the cache node 
corresponds to the sum of the size of the queries received 
from the querying nodes (at a rate kf per content of class 

k), and of the answers sent by the backbone when queried 
about a specific content. As we know that the backbone 

search frequency is 
kk

k

fd

f

+1
, and the mean number of 

backbone locations for each content of class k is 

k

k
kA µ

λ= , taking into account that there kl contents 

belonging to class k , we arrive to the following formula: 

.
1

bandwidth)(input ∑∑
∈∈ +

+=
Kk k

k

kk

kk
B

Kk
kkS fd

fl
fl

µ
λ

αβ . 

Similarly, the output bandwidth corresponds to the sum of 
the queries transmitted to the backbone plus the content 
locations answered to the querying nodes in response to 
their queries, leading to the formulation 

 ( ) ∑∑
∈∈ +
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We can then formulate the bandwidth constraints as 
follows: 
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2.3 Expected number of correct answers  
The network primary objective is to be able to give the 
most complete and correct information to the queries 
received. To formalize this objective, we develop an 
expression for the number of correct answers (i.e., the 
number of valid content locations) answered to the 
querying nodes. In particular, if we denote by kR the 

random variable corresponding to the number of content 
locations answered to a query for a content of class k, we 
want to compute its expected value 

kR . We know that 

during a cache node cycle, there will be at least one query 
(at the start of the cycle), and a random number of 
additional queries during the period where the content 
locations are stored in the cache, of duration kd  (as when 

the cache contents expire, the first query arriving will lead 
to the start of a new cycle). This leads for each content of 
class k to the following formulation:  
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where NCkR , is the answer to the initial query (transmitted 

to the backbone, and whose answers are stored in the 
cache), and CnkCk RR ,1, ...  are the answers to the following 

queries during the time period starting with the first query 
and of duration kd . 

The expected number of correct responses to the first query 
is exactly the expected number of nodes hosting the 

contents, { }
k

k
kNCk AR

µ
λ==Ε , . 

For the following queries, we use on one hand the fact that 
query arrivals follow a Poisson process of ratekf , so that 
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the probability of observing n arrivals during a time 
interval of length kd  is: 
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On the other hand, it is a well-known fact (see for instance 
the discussion in [5]) that the distribution of the arrivals of 
a Poisson process within a fixed interval follows a uniform 
distribution. As a result, the expectation of the number of 
correct answers given to the queries during this interval 
will be equal to the mean number of valid content locations 
in the interval. As the number of valid locations known at 

time t after the last query is equal to t
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Then we have that: 
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Combining all these results, we find  
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Finally, we can compute the expected number of correct 
answers taking into account all contents; this is the function 
we would like to maximize:  
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2.4 Mathematical programming formulation  
If we put together the network objective and the bandwidth 
restrictions discussed in the previous section, we arrive to 
the following formulation of our CCP problem: 
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This is a non-linear optimization problem, both in the 
restrictions and in the objective function. If we study it in 
detail, we can see that both the feasible solution space and 
the objective function are convex. As the problem is stated 
as a maximization one, a convex objective function will in 
general lead to multiple local optima. 

3. A CASE STUDY ILLUSTRATION 
In order to apply framework that we have presented to a 
given network, it is necessary to obtain from measurements 
or previous studies the information about the parameters of 
the class contents. The case of the Gnutella peer-to-peer 
(P2P) file sharing network has been developed as part of the 
MSc. Thesis of one of the authors of the present paper  
[17]. In the following section, we look at the DNS (Domain 
Name System) [11][12], which is the system used on 
Internet in order to map symbolic domain names (such as 
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www.fing.edu.uy) into IP addresses corresponding to 
actual computers in the network (such as 164.73.32.3).  
The network actually modeled corresponds to the .uy 
(Uruguay) subdomain of Internet, and the parameters used 
are based on real data obtained thanks to the support of 
ANTEL (Administración Nacional de Telecomunicaciones, 
www.antel.com.uy), which is a state-owned company, and 
the largest telco in Uruguay. 

3.1 Parameters for the DNS  network. 
DNS (Domain Name System) can be seen as a content 
network with hierarchical distribution, where the 
information consistency is one of the most important 
objectives. DNS is based on a network of recursive servers, 
which pass on queries until finding authoritative answers, 
which minimize the probability of information 
inconsistency (even if the correctness cannot be completely 
guaranteed). 

In our case, we are interested in recursive servers, which 
correspond to the aggregation nodes of our general model.  
We collected real data from the recursive servers at 
ANTEL, which daily serve hundreds of thousands users, 
with daily peak query rates of approximately 1800 queries 
per second.  The parameters of the model are summarized 
in Table 1.  

Parameters Values 

C : number of different contents 220107 

f : average content query rate  
Empirical 

distribution (heavy 
tailed, see Figure 3) 

λ : average content storage rate  0.8361 hr-1 

µ : average content location 

validity rate 
0.5158 hr-1 

Sα : size of a the answer to a  

content query  
169.6 bytes 

Bα : size of the answer of a 

backbone search  
1150.3 bytes 

Sβ : size of a content query  80.45 bytes 

Bβ : size of a backbone search 

packet 
385.6 bytes 

INBW : input bandwidth  1.933×108 bytes/hr. 

OUTBW : output bandwidth 3.445×108  bytes/hr. 

Table 1: parameter values for the case study. 
 

As previously discussed, in our study we only took into 
account the behavior of the Uruguayan domains, i.e., those 
whose names finish by .uy.  

We collected 10 consecutive days of recursive server logs, 
in order to estimate the total number of contents and the 
distribution of query rates. ANTEL DNS infrastructure 

employs the BIND software (Berkeley Internet name 
domain, by Internet Software Consortium, 
http://www.isc.org/products/BIND), which was very useful 
as the logs it collects contain very detailed information. 
The log files were processed using a BerkeleyDB data base 
(Sleepycat Software Inc.. http://www.sleepycat.com/)  to 
obtain the statistics of the domain queries.  
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Figure 3: domain query rates distribution (tail cut off). 

The largest part of the .uy  domains actually belong  to the 
.com.uy zone, which is administered by ANTEL. We 
took the historical information of the domain changes 
between October 2003 and October 2005; this information 
was used to compute overall storage and validity rates for 
the contents.  

To compute the mean packet sizes, we also collected 
information about the packets transmitted and received by a 
DNS recursive server (in this case, a 15 minutes detailed 
sample provided us with enough information). Table 2 
shows the measurements, which were the basis for 
computing the Alfa and Beta parameters shown on Table 1 

   

 Number Total bytes 
transmitted. 

Number of 
registers 

Queries 366148 29458160 402098 

Answer to 
queries 

168530 40089683 236386 

Backbone 
searches 

61481 5594012 293552 

Answers to 
backbone 
searches 

56442 10774381 293552 

Table 2: statistics for packet sizes. 

  

Finally, in the case of ANTEL recursive servers, the 
bandwidth limitation is actually driven by the CPU 
processing power, which limits the number of queries that 
may be  processed by time unit.  
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In our case, the empirical measurements result  in 
bytes/hr 193305600kbps 419.5 ==INBW  

and bytes/hr 344494080kbps 747.6 ==OUTBW  . 

3.2  Numerical results. 
The data collection discussed in the previous section 
resulted in obtaining detailed query rate information for 
each of the 220107 contents observed. A possibility would 
be to create a content class of cardinality 1 for each 
different content, this would lead to a large non-linear 
problem in 220107 independent variables. As an 
alternative, we cluster the contents into a small number of 
content classes, where in each class we will include 
contents with equal or at least similar query rates. As it is 
not a-priori clear what is the best number of classes to use, 
we experimented with five different values, namely 2, 8, 
16, 32, and 128 classes.  

In order to solve the different problems formulated, we 
used AMPL [2], an algebraic modeling language for 
mathematical programming problems, in conjunction with 
MINOS (version 5.5) [13], an optimization solver. In the 
Appendix, we give some examples of how the optimization 
problem is formulated in terms of the AMPL language, and 
of the commands to be used to find a numerical solution.  

All experiments were run on a PIII 800 MHz computer, 
with 320 Mb RAM space. The results obtained are 
summarized in Table 3. The objective function has been 
normalized, using a tight upper bound, so that the values 
can be compared directly. Among other observations, we 
can see that when the number of classes grows, the 
available resources are being increasingly used. Also, the 
computational times required to solve the model grow, 
albeit they remain very modest. 

Number 
of 

content 
classes 

Normalized 
Objective 
function 

Execution 
time (secs.) 

Input 
bandwidth 
employed 
(bytes/hr) 

Output 
bandwidth 
employed 
(bytes/hr) 

2 0. 969623 0.000 193305400 77163700 

8 0. 982216 0.020 193305400 77163700 

16 0. 997218 0.060 193305400 77163700 

32 0. 999742 0.120 193305400 77163700 

128 0. 999919 0.347 193305400 77163700 

Table 3:  Results for different number of content 
classes.  

 

As we are dealing with aggregated data, it is important to 
translate back the results into the terms of the original 
problem. In particular, we now consider again the 220107 
different contents, and we evaluate the number of correct 

answers to queries if we use for each content the cache 
expiration times given by the optimization models. Table 4 
summarizes this comparison. 

Number 
of 
classes 

Normalized objective 
function for the 
aggregated problem 

Normalized objective 
function for the 
original problem 

2 0.96962300 0.88249787 

8 0.98221600 0.95332949 

16 0.99721800 0.99412569 

32 0.99974200 0.99966787 

128 0.99991900 0.99991900 

 Table 4:  Discrepancies between objective functions for 
original and aggregated models.  

From this table, we can see that if the number of classes is 
too low, then the approximation error incurred in the 
aggregated model is very large, and the percentage of 
correct answers to queries in the real problem will be much 
below the nominal values computed by the optimization 
procedure. This discrepancy gets very quickly irrelevant 
when the number of classes increase, when we have 128 
classes the results coincide. 

4. CONCLUSIONS 
This paper discusses the impact that cache expiration times 
have on the behavior of aggregation nodes in a content 
network. In particular, we present a simplified model to 
evaluate the total number of correct answers given to 
content queries, and to evaluate the bandwidth usage. On 
the basis of this simplified model, we present a 
mathematical programming formulation, which allows to 
find optimal values for the cache expiration times in order 
to maximize the number of correct answers, subject to 
bandwidth limitations. We have also studied as a particular 
case the DNS system, in particular for the case of the .uy 
Internet domain; a comprehensive data collection program 
has allowed us to obtain the numerical parameters needed 
to instantiate the optimization model and obtain the 
corresponding results for the cache expiration dates. The 
results show that the computational requirements are 
modest, and that using data with relatively high 
aggregation  we can obtain high performance levels. We 
think that models of this kind lead to improved 
understanding of the behavior of content networks, and can 
be used to test their performance in a wide variety of 
potential scenarios, which are difficult to test in practice. 

Future work includes using the model with test cases 
corresponding to additional content networks of different 
characteristics. It is also possible to refine the model to take 
into account additional features (for example, the search 
answer packet sizes could be divided into a fixed part plus 
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a variable, per location answered, part; additional 
constraints could be added to represent particular features 
of specific networks). Another interesting point is doing a 
more detailed analysis of the impact of the number of 
content classes chosen on the quality of the results 
obtained, as well as on the computational requirements 
imposed by the solution methods. Finally, a more difficult 
challenge is to integrate backbone behavior details into this 
model, in order to have a more wide perspective on the 
tradeoffs between information publication and search in a 
content network. 
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7.  APPENDIX: AMPL code  examples 
We give here more information regarding the AMPL code 
used for modeling and solving the problem instances. 
Figure 4 corresponds to the  model.  Figure 4 contains the 
AMPL commands used to solve the problem.  Figure 6 
shows the detailed data corresponding to the 2 class  
instance. 

 

Figure  4: AMPL model   

 

 
  
Figure 5: AMPL commands  

 

 

Figure 6: Detailed data for the two-class instance 

option ampl_include '.'; 
 
option solver minos; 
option minos_options 'crash_option=0 \ 
 feasibility_tolerance=1.0e-8 scale=no \ 
 summary_file=6 summary_frequency=5 \ 
 timing= 1'; 
 
model cccp.mod; 
data cccp.dat; 
solve; 
display epsilon; 
display bitsIn.lb, bitsIn.ub, bitsIn.body, bitsIn.slack; 
display bitsOut.lb, bitsOut.ub, bitsOut.body, 
bitsOut.slack; 
display d; 
expand bitsIn, bitsOut;  
 

param K >=0, integer;  
set CLASS = {1..K};  
param f {k in CLASS}; 
param lamda {k in CLASS}; 
param mu {k in CLASS}; 
param l {k in CLASS};  
param alphaS >=0;  
param alphaB >=0;  
param betaS >=0;  
param betaB >=0;  
param BWin >=0;  
param BWout >=0;  
 
var d {k in CLASS} >=0.000001 default 0.000001; 
 
maximize epsilon:  
 (sum {k in CLASS} 
l[k]*lamda[k]/mu[k]/mu[k]/d[k]*( 
  mu[k]*(1-exp(-f[k]*d[k])) +  
  f[k]*(1-exp(-mu[k]*d[k])) -  
  1/d[k]*(1-exp(-f[k]*d[k]))* 
                                   (1-exp(-mu[k]*d[k]))))/ 

(sum {k in CLASS} l[k]*lamda[k]/mu[k]*f[k]); 
 
subject to bitsIn : 
 0 <= betaS*(sum {k in CLASS} l[k]*f[k]) +  
 alphaB*(sum {k in CLASS} 
l[k]*lamda[k]/mu[k]*f[k]/(1+d[k]*f[k]))  
    <= BWin; 
 
subject to bitsOut:  
 0 <= alphaS*(sum {k in CLASS} 
l[k]*lamda[k]/mu[k]*f[k]) +  
   betaB*(sum {k in CLASS} 
l[k]*f[k]/(1+d[k]*f[k]))  
    <= BWout; 

param K        := 2;  
 
param alphaS   := 169.59400000;  
param alphaB   := 1150.25200000;  
param betaS    := 80.45400000;  
param betaB    := 385.55700000;  
param BWin     := 193305600.00000000;  
param BWout    := 344494080.00000000;  
 
param f :=  
         1 1059.31197749  
         2 0.32706349; 
param lamda :=  
         1 0.83609821  
         2 0.83609821; 
param mu :=  
         1 0.51581508  
         2 0.51581509; 
param l :=  
         1 68.00000000  
         2 220039.00000000; 


